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Ferrohydrodynamics: Testing a third magnetization equation
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A new magnetization equation recently derived from irreversible thermodynamics is employed to the cal-
culation of an increase of ferrofluid viscosity in a magnetic field. Results of the calculations are compared with
those obtained on the basis of two well-known magnetization equations. One of the two was obtained phe-
nomenologically, another one was derived microscopically from the Fokker-Planck equation. It is shown that
the third magnetization equation yields a quite satisfactory description of magnetiviscosity in the entire region
of magnetic-field strength and the flow vorticity. This equation turns out to be valid—like the microscopically
derived equation but unlike the former phenomenological equation—even far from equilibrium, and so it
should be recommended for further applications.
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The conventional set of ferrohydrodynamic equatio
@1–3# consists of the equation of ferrofluid motion, the Ma
well equations, and the magnetization equation. The la
was first derived thirty years ago by the author:

dM

dt
5V3M2

1

t
~M2M0!2

1

6hf
M3~M3H! ~1!

~Ref. @1#, Sh ’72! HereM stands for the ferrofluid magnet
zation under the magnetic fieldH and the flow vorticity
2V5“3v, h is the fluid viscosity,f5nV the volume frac-
tion of magnetic grains in the liquid,n is their number den-
sity, V the volume of a single particle, andt53hV/kBT is
the Brownian time of rotational particle diffusion. When th
fluid is at rest in a stationary magnetic field, itsequilibrium
magnetizationM0 is described by the Langevin formula

M05nmL~j!
j

j
, j5

mH

kBT
, L~j!5cothj2j21, ~2!

wherem is the magnetic moment of a single particle. T
phenomenological Eq.~1! generalizes the Debye relaxatio
equation in case ofspinningmagnetic grains. The spin origi
nates from viscous and magnetic torques acting upon
particles—see Eq.~6!.

Soon after@1#, Martsenyuk,et al. @4# ~MRSh! proposed
another magnetization equation derived microscopic
from the Fokker-Planck equation. They have employed
the purpose an originaleffective-field method~EFM! de-
scribed in detail in@5#. According to the method, an arbitrar
nonequilibrium magnetizationM is considered at any mo
ment as an equilibrium one in a certain—specia
prepared—effective fieldHe, that is

M5nmL~z!z/z, z5mHe/kBT. ~3!

The magnetization~3! relaxes to its equilibrium value~2! as
the effective fieldHe ~or z) approaches the true fieldH ~or
j). This relaxation process is governed by the equation@4,6#
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dM

dt
5V3M2

@z22~j "z!#

tz2
M

2
@z2L~z!#

6hfzL2~z!
M3~M3H! ~MRSh!. ~4!

Equations~3! and ~4! determine the dependenceM (t;H,V)
in an implicit form, where dimensionless effective fieldz is
the parameter.

It is well established that Eq.~4! describes very fine rea
ferrofluids. Comparison with computer simulation of th
Brownian motion in orientational space@7,8# indicated that
the EFM yields quite accurate results for any values ofj and
Vt. The same conclusion has been made in@6# by compar-
ing the solutions of Eq.~4! with the results of numerica
integration of the Fokker-Planck equation. At that time, t
calculations@6–8# have shown that the phenomenologic
equation~1! is valid for any field magnitudes but only suffi
ciently small vorticities,Vt,1. The applicability of Eq.~1!
in the caseVt!1 was corroborated by numerical@9# and
analytical @10# solutions of the Fokker-Planck equation
well. Therefore, under consideration of a weakly nonequil
rium situation, one should give preference to Eq.~1! as it is
far more simpler for analysis than Eq.~4!. The latter, how-
ever, guarantees the correct description of magnetiza
even if its deviation from equilibrium value~2! is large,
Vt@1, that is when Eq.~1! leads to erroneous results.

A new phenomenological magnetization equation deriv
quite recently@11# from irreversible thermodynamics is fre
from the above-mentioned shortcoming. This equation,

dHe

dt
5V3He2

1

t
~He2H!2

1

6hf
He3~M3H! ~5!

~Ref. @11#, Sh ’01!, coincides with Eq.~1! in the limit of
low field, j!1, when the true magnetization and its equili
rium value can be written asM5xHe andM05xH, respec-
tively; here x5nm2/3kBT stands for the initial magnetic
susceptibility. However, due to nonlinearity of the magne
zation law ~2!–~3!, Eqs. ~1! and ~5! predict very
©2001 The American Physical Society01-1
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different magnitudes of magnetization for large magnitud
of j. As it will be shown, Eq.~5! is valid even far from
equilibrium.

As a check on applicability of the old~1! and the new~5!
phenomenological equations we have chosen their pre
tions about therotational or spin viscosityh r of ferrofluids.
Below we shall compareh r obtained from Eqs.~1! and ~5!
with its almost exact value resulting from the EFM Eq.~4!.

A ferrofluid flow in a magnetic field is accompanied wi
an intertwinement of hydrodynamic and magnetic inter
tions. Being magnetized, the fluid is subject to magne
force and torque with the volume densities (M "“)H and
M3H, respectively. On the other hand, the flow vortici
causes a change of magnetization. As seen from Eqs.~1!, ~4!,
and~5!, V impedes alignment ofM with the direction of the
local field H. The appearing magnetic torque is equilibrat
by the viscous torque,

6hf~v2V!5M3H, ~6!

where v is a macroscopic~i.e., averaged over physicall
small ferrofluid volume! angular spin rate of magneti
grains. But any deviation ofv from V leads to an additiona
dissipation which is just manifested in rotational viscosi
This dissipation contributes to the stress tensor@1,2#:

s ik52pd ik1hS ]v i

]xk
1

]vk

]xi
D13hfe ikl~v l2V l !

1
1

4p S HiBk2
1

2
H2d ikD ; ~7!

heree ikl stands for an antisymmetric unit tensor and the l
term represents the Maxwell tensor of magnetic stresse
ferrofluids. Eliminatingv2V from Eq. ~7! with the aid of
Eq. ~6!, we obtain@1,2#

s ik52S p1
H2

8p D d ik1hS ]v i

]xk
1

]vk

]xi
D1

HiBk

4p

1
1

2
~MiHk2MkHi !. ~8!

On recognizing thatBk5Hk14pMk , the stress tensor~8!
takes an evidentlysymmetricform:

s ik52S p1
H2

8p D d ik1hS ]v i

]xk
1

]vk

]xi
D1

HiHk

4p

1
1

2
~MiHk1MkHi !,

as it must be in our approximation. Actually, the exact res
reads asski2s ik5I e ikl(dv l /dt) whereI 5rsd

2f/10 is the
volume density of the particle moment of inertia (rs the
particle density andd their diameter!. However, taking into
account an extreme smallness ofI for the particles withd
;10 nm, we have not inserted the inertia termI (dv/dt) in
Eq. ~6!.
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The boundary wall streamlined by the fluid is acted by t
force f i5@s ik#nk on unit area; here@ # denotes difference
evaluated across the fluid-solid interface andn is the normal
to the interface. The friction~tangential! force exerted on the
wall is f t5@stn#. By using the electrodynamic boundar
conditions,@Ht#50 and@Bn#50, we get from Eq.~8!

f t5h~]vt /]xn!1~M tHn2MnHt!/2. ~9!

For the Poiseuille or Couette flow,v5@0,v(x),0#, in a trans-
versal magnetic field,H5(H,0,0), magnetization has two
components:M5(Mx ,M y ,0). Then Eq.~9! can be written
in the form f t52(h1h r)V where 2V5]v/]x and rota-
tional viscosity is defined as

h r5M yH/4V. ~10!

Thus, the additional viscosity is expressed through the
axis component of magnetization,M y . For small Vt this
component is also small; according to the all three of
magnetization equations cited above,M y}Vt. So, h r does
not depend on the flow vorticity in the limitVt!1. How-
ever, for finite values ofVt the viscosity does depend onV.
As a result, the functionstn(V) deviates from the linear
one, i.e., a ferrofluid acquires non-Newtonian properties.

Proceeding to the calculation of rotational viscosity on t
basis of Eq.~5!, it is convenient to pass from the fieldsH and
He to their nondimensional valuesj andz:

dz

dt
5V3z2

1

t
~z2j!2

L~z!

2tz
z3~z3j!. ~11!

At the stated above arrangement of the applied magn
field with respect to the fluid flow, Eq.~11! admits a steady
solution in which the effective fieldz tracks the true fieldj
with lag anglea, i.e.,z5(z cosa,z sina,0). The dependence
of z anda uponj andVt is given by

Aj22z25
2Vtz

21zL~z!
, cosa5

z

j
. ~12!

SubstitutingM y5nmL(z)sina in ~10! and using~12!, we
obtain

h r5
3

2
hf

zL~z!

21zL~z!
~Ref. @11#, Sh801!. ~13!

In the same way we find from Eq.~4!

Aj22z25
2VtzL~z!

z2L~z!
, cosa5

z

j
, ~14!

that results in

h r5
3

2
hf

zL2~z!

z2L~z!
~MRSh!. ~15!

The solution of Eq.~1! can be presented in a similar form
Let us introduce a new variablez instead ofM by the rela-
tion M5M0(z/j) where M05nmL(j). It is worth noting
that z is no more an effective field unlikez in preceding
1-2
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relationships~12!–~15!. By substituting the componentsMx
5M0(z/j)cosa and M y5M0(z/j)sina in Eq. ~1!, we get
cosa5M/M05z/j and

Aj22z25
2Vtjz

2j1z2L~j!
. ~16!

This and the definition~10! yield

h r5
3

2
hf

z2L~j!

2j1z2L~j!
. ~Ref. @1#, Sh872! ~17!

Owing to the smallness of magnetic grains, the Brown
relaxation timet does not exceed 1024 s even in high-
viscous ferrofluids. Hence the inequalityVt!1 is usually
satisfied. Then, on neglecting the valueVt in Eqs. ~12!,
~14!, and~16!, all three of these relationships are reduced
z5j. Eliminating nowz from Eqs.~13! and~17!, we see that
both the old~1! and the new~5! phenomenological equation
predict the samedependence of rotational viscosity on th
magnetic-field strength:

h r~j!5
3

2
hf

jL~j!

21jL~j!
5

3

2
hf

j2tanhj

j1tanhj
. ~18!

The EFM magnetization equation~4! yields a somewhat dif-
ferent result. Settingz5j in Eq. ~15! gives

h r~j!5
3

2
hf

jL2~j!

j2L~j!
~MRSh!. ~19!

The viscosities~18! and~19! are compared in Fig. 1. Both
of them approach the saturation valueh r(`)53hf/2 at j
@1. In the figure we plot the reduced rotational viscos
h r(j)/h r(`) as a function ofj. The upper curve calculate
by the EFM@4# represents a very good approximation. A
tually, as shown in@5,10#, it hardly differs from the exact
solution of the linearized Fokker-Plank equation. Both t
phenomenological equations,~1! and ~5!, result in the lower
curve in Fig. 1 that is described by the Shliomis’ formu

FIG. 1. Dependence of the reduced rotational viscosity on
dimensionless field strength given by Eq.~19! MRSh and by Eq.
~18! ~Refs.@1,11#, Sh872 and Sh801).
06050
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~18!. This function agrees with Eq.~19! in the low- and
high-field limits and deviates from it, at most, by 15% in th
entire range of the argumentj.

When the ferrofluid is subjected to viscous shear,
magnetic grains tend to be rotated out of alignment with
magnetic field. Thus the flow with a sufficiently large she
rate,Vt>1, induces—along with the Brownian motion—
quotient demagnetization. Formally, this effect originates
from decreasing the parameterz determined by Eqs.~12!,
~14!, and ~16!. According to these equations,z5j when

FIG. 2. Dependence of the rotational viscosity on the field
some values of the shear rateVt, as calculated from the EFM@Eqs.
~14!–~15!, MRSh#, and by the new@Eqs. ~12!–~13!, Ref. @11#,
Sh801# and old@Eqs.~16!–~17!, Ref. @1#, Sh872# phenomenological
approaches.
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Vt50 but the more there is ofVt at constantj, the less
there is ofz. The reduction of the magnetization leads in tu
to some decrease in the rotational viscosity. This decre
imperceptible in practice up toVt.1, then becomes very
significant. Figure 2 illustrates the dependence of the visc
ity increase on the magnetic-field strength for three value
the productVt. Interestingly, under the finite shear rate t
viscosities given by Eqs.~13! and~17! do not coincide with
each other any more. As seen from the plot, the higher
shear the more discrepancy between viscosity values
dicted by the new and the old phenomenological equatio
At high shear in a high field, Eq.~1! predicts ahysteresisof
viscosity, which however is corroborated neither by dire
calculations of@6–8# or by the solution~14!–~15! of the
EFM equation~4!. Our new Eq.~5! also does not predic
such a hysteresis but it provides us with a quite satisfac
viscosity description in a wide region of parametersj and
Vt. Indeed, in this entire region the solutions of Eqs.~4! and
~5! agree closely, as shown in Fig. 2. Thus, Eq.~5! can be
recommended for an employment on the same level with
~4!. It is worth noting that all the above calculations, carri
out for a shear flow, apply equally to a rigid rotation of
ferrofluid with an angular velocityV in a constant transver
sal magnetic field,H'V, and to a quiescent ferrofluid sub
jected to a uniform rotating fieldH5(H cosVt,H sinVt,0) as
well.

The difference between discussed magnetization eq
tions is also manifested at the relaxation from an equilibri
magnetization in a quiescent ferrofluid after the field is s
denly switched off. Then the fluid remains at rest,V50, so
M andHe are always parallel toH. Hence Eqs.~1!, ~4!, and
~5! are reduced to

dM/dt52~M2M0!/t, ~20a!

dM/dt52~12H/He!M /t, ~20b!

dHe/dt52~He2H !/t, ~20c!

respectively. In Fig. 3 we plot the decay of reduced mag
tization M (t)/M0 according to Eqs. ~20! with M0
p.

.
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5nmL(j) for some initial field magnitudesj5mH/kBT. As
the true fieldH is switched off at the momentt50, Eqs.
~20a! and~20b! coincide with each other att.0, when their
solution reads

M ~ t !/M05exp~2t/t!, ~21!

i.e., it does not depend onj. Equation~20c! has the solution
He(t)5H exp(2t/t), so that we obtain

M ~ t !/M05L~je2t/t!/L~j!. ~22!

The last decay predicted by the new magnetization equa
~5! is exponential only in the limitj!1, while the EFM
equation~4! together with the old phenomenological equ
tion ~1! predict the exponential decay of magnetization
any values ofj. This difference in relaxation behavior sid
by side with the difference in the ferrofluid viscosity can
of relevance for testing the magnetization equations and
interpretation of corresponding experiments.

This work was supported by the Meitner–Humboldt R
search Award adjudged by the Alexander von Humbo
Foundation and by Grant No. 336/00-15.3 from the Isr
Science Foundation.

FIG. 3. Time dependence of the reduced magnetiza
M (t)/M0 after the magnetic fieldj is switched off, as described b
Eq. ~22!. The lowest curve also represents the solution~21! for any
j.
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