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Ferrohydrodynamics: Testing a third magnetization equation
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A new magnetization equation recently derived from irreversible thermodynamics is employed to the cal-
culation of an increase of ferrofluid viscosity in a magnetic field. Results of the calculations are compared with
those obtained on the basis of two well-known magnetization equations. One of the two was obtained phe-
nomenologically, another one was derived microscopically from the Fokker-Planck equation. It is shown that
the third magnetization equation yields a quite satisfactory description of magnetiviscosity in the entire region
of magnetic-field strength and the flow vorticity. This equation turns out to be valid—like the microscopically
derived equation but unlike the former phenomenological equation—even far from equilibrium, and so it
should be recommended for further applications.
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The conventional set of ferrohydrodynamic equations dMm [2—(&-0)]
[1-3] consists of the equation of ferrofluid motion, the Max- rTE OXM— > M
well equations, and the magnetization equation. The latter ¢
was first derived thirty years ago by the author: [{—L(0)]

——— —MX(MxH) (MRSh. (4
dM 1 1 67¢LL(L)
E=Q><M——(M—MO)—6—M><(M><H) (1) ' '
T né Equations(3) and (4) determine the dependenté(t;H, )
in an implicit form, where dimensionless effective figjds
(Ref.[1], Sh '72 HereM stands for the ferrofluid magneti- the parameter.
zation under the magnetic field and the flow vorticity It is well established that Eq4) describes very fine real
2Q=V Xv, 5 is the fluid viscosity¢=nV the volume frac- ferrofluids. Comparison with computer simulation of the
tion of magnetic grains in the liquidy is their number den- Brownian motion in orientational spa¢&,8] indicated that
sity, V the volume of a single particle, and=37V/kgT is  the EFM yields quite accurate results for any value§ ahd
the Brownian time of rotational particle diffusion. When the Q7. The same conclusion has been madg6ihby compar-
fluid is at rest in a stationary magnetic field, équilibrium  ing the solutions of Eq(4) with the results of numerical
magnetizatiorM is described by the Langevin formula integration of the Fokker-Planck equation. At that time, the
calculations[6—8] have shown that the phenomenological
£ mH equation(1) is valid for any field magnitudes but only suffi-
Mo=nmL(&) >, é=—=, L(&=cothé—¢ 1 (2)  ciently small vorticities) 7<1. The applicability of Eq(1)
3 kgT in the case()7<1 was corroborated by numericgd] and
analytical[10] solutions of the Fokker-Planck equation as
wherem is the magnetic moment of a single particle. Thewell. Therefore, under consideration of a weakly nonequilib-
phenomenological Eq1) generalizes the Debye relaxation rium situation, one should give preference to E).as it is
equation in case afpinningmagnetic grains. The spin origi- far more simpler for analysis than E@). The latter, how-
nates from viscous and magnetic torques acting upon thever, guarantees the correct description of magnetization
particles—see Eq6). even if its deviation from equilibrium valu€?) is large,
Soon after[1], Martsenyuk,et al. [4] (MRSH proposed (7>1, that is when Eq(1) leads to erroneous results.
another magnetization equation derived microscopically A new phenomenological magnetization equation derived
from the Fokker-Planck equation. They have employed foquite recently{11] from irreversible thermodynamics is free
the purpose an originagffective-field methodEFM) de-  from the above-mentioned shortcoming. This equation,
scribed in detail if5]. According to the method, an arbitrary
nonequilibrium magnetizatioM is considered at any mo- dH, 1 1
ment as an equilibrium one in a certain—specially at =QX He—;(He—H)— ﬂHeX(M XH) (5
prepared—effective fieltH,, that is n

(Ref. [11], Sh '01), coincides with Eq.(1) in the limit of
low field, £<1, when the true magnetization and its equilib-
rium value can be written ad = yH, andMy= yH, respec-
The magnetizationi3) relaxes to its equilibrium valug) as tively; here y=nm?/3kgT stands for the initial magnetic
the effective fieldH, (or £) approaches the true field (or  susceptibility. However, due to nonlinearity of the magneti-
&). This relaxation process is governed by the equdtéioB]  zation law (2)—(3), Egs. (1) and (5 predict very

M=nmWL()&JL, {=mHo/KgT. 3)
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different magnitudes of magnetization for large magnitudes The boundary wall streamlined by the fluid is acted by the
of £ As it will be shown, Eq.(5) is valid even far from force f;=[o;]ny on unit area; her¢ ] denotes difference
equilibrium. evaluated across the fluid-solid interface anid the normal
As a check on applicability of the old) and the new®5) to the interface. The frictiotangential force exerted on the
phenomenological equations we have chosen their prediwall is f,=[o,]. By using the electrodynamic boundary
tions about theotational or spin viscosityn, of ferrofluids.  conditions,[H,]=0 and[B,]=0, we get from Eq(8)
Below we shall comparey, obtained from Eqs(1) and(5)
with its almost exact value resulting from the EFM E4).
A ferrofluid flow in a magnetic field is accompanied with For the Poiseuille or Couette flow=[0u(x),0], in a trans-

an intertwinement of hydrodynamic and magnetic interac o = o
tions. Being magnetized, the fluid is subject to magneticversal magnetic fieldH=(H,0,0), magnetization has two

force and torque with the volume densitiesl(V)H and pomponentsM=(Mx,My,O).Then Eq.(9) can be written
M XH, respectively. On the other hand, the flow vorticity In the f_orm f'7=.2(77f 7)$} where 2)=gv/dx and rota-
causes a change of magnetization. As seen from Eyg4), tional viscosity is defined as

and(5), © impedes alignment dfl with the direction of the
local fieldH. The appearing magnetic torque is equilibrated
by the viscous torque,

f,=n(dv.1ox,)+(M H,—MH_)/2. 9

7=M H/4Q. (10

Thus, the additional viscosity is expressed through the off-
axis component of magnetizatiod,. For small{)r this
component is also small; according to the all three of the
) o ) magnetization equations cited abow,x() 7. So, , does
where w is a macroscopidi.e., averaged over physically not depend on the flow vorticity in the limi2 7<1. How-
small ferrofluid volume angular spin rate of magnetic eyer, for finite values of) ~ the viscosity does depend 6h
grains. But any deviation ab from € leads to an additional aAs a result, the functionr (1) deviates from the linear
dissipation which is just manifested in rotational viscosity.gne, i.e., a ferrofluid acquires non-Newtonian properties.
This dissipation contributes to the stress terjdo2]: Proceeding to the calculation of rotational viscosity on the
basis of Eq(5), it is convenient to pass from the fieltlsand

67¢(w—Q)=MXxH, (6)

v, vy : : - .
Ti=—PSit 7 o’!xk+ i +3nden(w— Q) H, to their nondimensional valuesand &
dg 1 L({)
1 1, GO9S k(X (1D
+ 4| HiBi— 5H28 (7) 7 7¢

At the stated above arrangement of the applied magnetic
heree;y, stands for an antisymmetric unit tensor and the lasfield with respect to the fluid flow, Eq11) admits a steady
term represents the Maxwell tensor of magnetic stresses isolution in which the effective field tracks the true field
ferrofluids. Eliminatingw— Q from Eg. (7) with the aid of  with lag anglea, i.e., {=({ cosa,{sin«,0). The dependence
Eq. (6), we obtain[1,2] of { anda uponé and() 7 is given by

H?2 dvi dvy) HiBy s  207¢ {
— — s L, VE— ("= 5—F—, COSa=-. 12
Tik= | PF 877)5"‘+77(¢9xk+0xi>+ 4 S Y NP e (12
1 SubstitutingM,=nmL({)sin« in (10) and using(12), we
+§(Min_MkHi)- (8  obtain ’
3 {L(d)

On recognizing thaB,=H,+47M,, the stress tensdiB)

. K (Ref.[11], SH01). (13
takes an evidentlgymmetricform:

ﬂrziﬁﬁbm

- . 2 . gv; vy HiH, In the same way we find from E¢4)
—{*=———F—, cOosa=—,
1 —L(0) “TE
+ 5 (MiH+MH)), .
2 that results in
as it must be in our approximation. Actually, the exact result 3 LL2(0)
reads asry— o= € (dw, /dt) wherel = p.d?¢/10 is the =5 n¢ —L(Q) (MRSh). (15

volume density of the particle moment of inertia,(the

particle density andl their diameter. However, taking into The solution of Eq(1) can be presented in a similar form.

account an extreme smallness lofor the particles withd
~10 nm, we have not inserted the inertia terfd w/dt) in
Eq. (6).

Let us introduce a new variab&instead ofM by the rela-
tion M=My(&¢) where Mg=nmL(¢). It is worth noting
that ¢ is no more an effective field unliké in preceding
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FIG. 1. Dependence of the reduced rotational viscosity on the

dimensionless field strength given by E49) MRSh and by Eq.
(18) (Refs.[1,11], SH72 and Sho1).

relationships(12)—(15). By substituting the componentd,
=My(¢/€)cosa and My=Mq(¢/€)sina in Eq. (1), we get
cosa=M/My=¢/¢ and

20 7EL
. 16
et 26+ 7L(8) (o
This and the definitior{10) yield
3 2L
77r:§ ﬂgf)#ﬁf)@ (Ref. [1], Sh72) (17)

Owing to the smallness of magnetic grains, the Brownian

relaxation timer does not exceed 16 s even in high-
viscous ferrofluids. Hence the inequali€yr<<1 is usually
satisfied. Then, on neglecting the val@er in Egs. (12),

(14), and(16), all three of these relationships are reduced to

= ¢. Eliminating now{ from Eqgs.(13) and(17), we see that
both the old(1) and the new5) phenomenological equations
predict the samedependence of rotational viscosity on the
magnetic-field strength:

§L(E)
2+¢L(E)

The EFM magnetization equatidd) yields a somewhat dif-
ferent result. Setting= ¢ in Eq. (15) gives

3 gy
2"

The viscositie18) and(19) are compared in Fig. 1. Both
of them approach the saturation valyg(c) =37¢/2 at &

1. In the figure we plot the reduced rotational viscosity
7:(€)/ n,() as a function of. The upper curve calculated
by the EFM[4] represents a very good approximation. Ac-
tually, as shown in5,10], it hardly differs from the exact

3

3 tan
RTINS LIRS S Sl

~27? e tanhe (18

7 (& (MRSH). (19

RAPID COMMUNICATIONS

PHYSICAL REVIEW B4 060501R)

(18). This function agrees with Eq19) in the low- and
high-field limits and deviates from it, at most, by 15% in the
entire range of the argume#t

When the ferrofluid is subjected to viscous shear, the
magnetic grains tend to be rotated out of alignment with the
magnetic field. Thus the flow with a sufficiently large shear
rate,()7=1, induces—along with the Brownian motion—a
quotient demagnetization Formally, this effect originates
from decreasing the parametérdetermined by Eqgs(12),
(14), and (16). According to these equationg=¢ when
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FIG. 2. Dependence of the rotational viscosity on the field for

some values of the shear rdder, as calculated from the EFMEQs.

solution of the linearized Fokker-Plank equation. Both the(14)—(15), MRSH], and by the newEgs. (12—(13), Ref. [11],

phenomenological equationd,) and(5), result in the lower

Sh'01] and old[Egs.(16)—(17), Ref.[1], SH 72] phenomenological

curve in Fig. 1 that is described by the Shliomis’ formula approaches.
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Q7=0 but the more there is d) 7 at constantt, the less
there is of{. The reduction of the magnetization leads in turn
to some decrease in the rotational viscosity. This decrease,
imperceptible in practice up teb7=1, then becomes very
significant. Figure 2 illustrates the dependence of the viscos-
ity increase on the magnetic-field strength for three values of
the product() 7. Interestingly, under the finite shear rate the
viscosities given by Eq€13) and(17) do not coincide with
each other any more. As seen from the plot, the higher the
shear the more discrepancy between viscosity values pre-
dicted by the new and the old phenomenological equations.
At high shear in a high field, Eq1) predicts ahysteresif
viscosity, which however is corroborated neither by direct
calculations of[6—8] or by the solution(14)—(15) of the
EFM equation(4). Our new Eq.(5) also does not predict
such a hysteresis but it provides us with a quite satisfactor
viscosity description in a wide region of parametérand
Q7. Indeed, in this entire region the solutions of E@s.and £
(5) agree closely, as shown in Fig. 2. Thus, Eg). can be '
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FIG. 3. Time dependence of the reduced magnetization
X1 (t)/M, after the magnetic field is switched off, as described by
Eq. (22). The lowest curve also represents the soluti) for any

recommended for an employment on the same level with Eg=nmL(¢) for some initial field magnitude§=mH/kgT. As
(4). It is worth noting that all the above calculations, carriedthe true fieldH is switched off at the momerit=0, Egs.
out for a shear flow, apply equally to a rigid rotation of a (208 and(20b) coincide with each other &t-0, when their
ferrofluid with an angular velocit§2 in a constant transver- solution reads

sal magnetic fieldH.L Q, and to a quiescent ferrofluid sub-

jected to a uniform rotating fieldl = (H cosQt,H sinQt,0) as M(D/Mo=exp(~t/7), 21)
well. i.e., it does not depend ah Equation(20¢) has the solution
The difference between discussed magnetization equad (t)=H exp(-t/7), so that we obtain
tions is also manifested at the relaxation from an equilibrium _
d M(t)/Mo=L(&e Y7)IL(£). (22)

magnetization in a quiescent ferrofluid after the field is sud-

denly switched off. Then the fluid remains at reQt=0, S0  The last decay predicted by the new magnetization equation
M andH. are always parallel tél. Hence Eqs(1), (4), and  (5) is exponential only in the limitt<1, while the EFM

(5) are reduced to equation(4) together with the old phenomenological equa-
tion (1) predict the exponential decay of magnetization for
dM/dt=—(M—My)/, (208 any values of¢. This difference in relaxation behavior side
by side with the difference in the ferrofluid viscosity can be
dM/dt=—(1—H/HJM/r, (20p  of relevance for testing the magnetization equations and the

interpretation of corresponding experiments.

dHo/dt=—(He—H)/7, (200)
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